
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023869
TITLE: Final Results from the Tuning of the NMS_6b Weather Code

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the HPCMP Users Group Conference 2004. DoD
High Performance Computing Modernization Program [HPCMP] held in
Williamsburg, Virginia on 7-11 June 2004

To order the complete compilation report, use: ADA492363

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023820 thru ADP023869

UNCLASSIFIED



Final Results from the Tuning of the NMS_6b Weather Code

Daniel Pressel
US Army Research Laboratory (ARL), Aberdeen Proving Ground, MD

dmpresse@arl.army.mil

Abstract • The way in which the code interacted with the
memory system, in particular with the stream

The Nonhydrostatic Model Simulation (NMS) _6b buffers.
weather code is commonly used by weather forecasters at . Cache effects.
television stations across the country. It is also of interest 0 Translation Lookaside Buffers (TLBs).
to the US Army due to its superior ability to predict
weather in mountainous terrain. It was developed by Dr. * Methods used to reduce the time spent on integer
Greg Tripoli of the University of Wisconsin' 11. Currently arithmetic.

this code exists only as a shared memory application • Large page sizes
parallelized using OpenMP. Attempts to parallelize itfor In addition to the approaches to tuning and
distributed memory systems using MPI proved to be parallelizing discussed in the remainder of the paper, a
beyond the scope of the project that the author was number of fairly standard techniques were used to
involved in. This paper discusses efforts to improve the improve the performance of this code. The majority of
performance of the code at both the processor level and these techniques were used to eliminate redundant
at the level ofparallel performance. calculations (especially those involving the

exponentiation operator). In general, the savings in any
1. Introduction one routine was small, but the combined savings

amounted to 15-20 minutes for a 6 hour run. When

Initial efforts to port and tune the NMS_6b code combined with the other optimizations discussed in this

were discussed in Reference 2. These efforts included paper, the total improvement in run time was more than a

porting the NMS_6b weather code to the Cray X1, a factor of 2 for a run that had been taking over 9 hours.

single 32 processor node of the IBM SP with Power4 This project was supported by a grant of computer

processors, and to parallelize the code using MPI instead time from the DoD High Performance Computing

of OpenMP. It was concluded that the program was not a Modernization Program.

good candidate for porting to the Cray XI and this
portion of the project was terminated. Similarly, it was 2. The Effect that Granularity of
concluded that efforts to use MPI were beyond the scope Parallelization has on Performance
of this project due to complications involving support for
moving nested grids. This paper discusses the remaining Based on a variety of talks that the author has
aspects associated with the optimization of both the serial a ed on a sme one-on-one author it
and parallel (OpenMP) performance of the code. Issues attende as well a omeoneo n discusion itinvolving the use of a single 32 processor node of an IBM appears as though a commonly held misconception is that
SP with Power4 processors will be discussed. The it is almost always a win to take advantage of any
remainder of this paper will cover the following topics: opportunities for parallelizing code one finds. Even when

it is not a win, the general assumption appears to be that it
* The effect that granularity of parallelization has is not much of a loss. As was discussed in Reference 3,

on performance. this is most definitely not the case. A rough estimate of

* Other impediments to achieving linear speedup. the cost of parallelizing a section of code using loop-level
parallelism is to estimate the cost of synchronization.

U.S. Government Work Not Protected by U.S. Copyright 324



For small numbers of processors and bus based most promising of these approaches appeared to be to use
systems of any size, this will be approximately equal to one or another of the compiler directives for data
Memory Latency * C * N. C is a constant, and is most prefetching in an attempt to minimize the cost of
likely to be either 2 or 4 (we will assume 4). N is the initializing the large arrays (this was now over 50 percent
number of processors. The memory latency is likely to be of the time spent in AZERO). Unfortunately, it wasn't
at least 200 nanosecond (NS), and on some systems may until the project was nearly completed that it was
exceed 1000 NS. For purposes of discussion, we will discovered that on the IBM SP these directives are
assume 400 NS. Larger systems may use a more normally ignored when they occur in loops parallelized
sophisticated algorithm for synchronization, in which using OpenMP. There appears to be a complicated set of
case the cost would approximately equal Memory compiler options that one can use to get around this
Latency * C * C * Log base 2(N), where C and N are limitation, but we ran out of time before we could make
defined as above. For 32 processors this gives a them work.
synchronization cost of 51 microseconds. For 256 The initial parallelization effort left many loops to the
processors, the synchronization cost assuming the more automatic parallelization option found on' most of today's
sophisticated algorithm would be at least 28 compilers. So long as the loops were simple enough, this
microseconds, and might be larger since large systems was an efficient division of labor. Hovever, a careful
tend to have larger memory latencies. analysis of the output from a profiled run indicated that

From this discussion, one can conclude that to avoid some of these loops were not being parallelized.
parallel slowdown, a parallelized section of code should Individually, the cost of these loops was ,niniscule. Even
require not less than 28 microseconds to execute on a when taken in combination, they represented a small
single processor. In order to show good speedup, the percentage of the total CPU time. The jOroblem was that
amount of work should be at least a factor of 100 * N when run on 30 processors, the combined time spent in
greater than this. For 32 processors that comes to 0.16 these loops was 15-20 minutes for a 6 hour run. Some of
seconds. For 256 processors, that comes to 0.72 seconds. the loops proved to be difficult to parallelize, but enough
The importance of this discussion is that the subroutine of the work was either parallelized or eliminated through
AZERO was frequently used to initialize arrays to zero. serial optimizations to reduce the run time by at least 15
Over 99 percent of the time, these arrays were 84 minutes.
elements long. Assuming that the arrays are already in
the LI cache, this could be done in roughly 84 cycles. On 3. Other Impediments to Achieving Linear
an SGI Origin 3000 with 400 MHz processors, this comes
to 210 NS. On systems with newer processors, this value Speedup
would be even less. If the array needs to be fetched from
memory, and later written back to memory, and assuming As is discussed in Reference 3, when dividing finite
a usable memory bandwidth of 500 MB/second and 4 units of parallelism between processors, the ideal speedup

byte data, the initialization would take 670 NS. Clearly, will more closely resemble a staircase than a straight line

these calls should never have been parallelized. On the (e.g., with 15 units of parallelism it can be divided evenly
other hand, a small percentage of the calls involved between 5 processors, but not 4 or 6 processors). This
considerably larger arrays and therefore those calls effect becomes most pronounced as the number of
needed to be parallelized. Based on this analysis, processors approaches the degree of available parallelism.
AZERO was split into multiple loops, and depending on In the case of NMS_6b, this effect is further complicated
the size of the array, different code is selected for by the internal workings of the code. Based on certain
execution. hard coded parameters, the program clusters multiple

AZERO was not the only short count loop that had units of parallelism into a single group. Effectively, this
been parallelized. We believe that all such loops have reduces the available level of parallelism. When
now been identified and the parallelization constructs absolutely necessary, one can change 'the hard coded
were either removed entirely or made conditional as in parameters, thereby increasing the usable level of
the case of AZERO. This had the unfortunate side effect parallelism. Tests were run on the IBM SP with Power 4
of increasing the percentage of serial code. In other processors to see what effect this would have on the run
words, it effectively helps to establish an upper bound on time. The hope was that as long as the parallelism was
the parallel speedup when using large numbers of roughly an integer multiple of the number of processors
processors. In an attempt to limit this side effect, ways being used, the run time would be unaffected. This was
were found to eliminate most of the calls to AZERO. not what we found. Instead, the smaller the group size,
Additionally, efforts were made to maximize the the greater the usable level of parallelism, but also the
efficiency of AZERO and related routines. One of the greater the run time, by up to 25 %. The obvious solution

325



for the IBM SP where we were limited to using no more problem, since different parts of a program will put
than 32 processors was to use the largest group size different levels of stress on the memory system.
possible. However, for systems with larger numbers of Therefore, assuming that each job randomly enters and
processors this effect would be one more impediment to exits the high bandwidth and low bandwidth subroutines,
achieving anything close to linear speedup. then one might not see much of a problem. Similarly,

Another problem has to do with competition between most jobs parallelized using MPI are coarse grained jobs.
the operating system and the application for processor While the progress of each process associated with the
time. When dealing with a large system such as the SGI MPI job is far from random, there is enough of a
Origin 3000 with up to 2048 processors, it is reasonable disconnect that one might see this problem to a much
to expect that a few processors will be reserved for use by smaller extent. Unfortunately, since NMS_6b is
the operating system, interactive jobs, and the like. On parallelized using loop-level parallelism, which is
systems with smaller node counts, the normal practice is inherently fine grained, all of the processors progress in
to schedule work on all of the processors. Therefore, lock step between high bandwidth and low bandwidth
with a 32 processor node size, one would normally expect subroutines. Therefore, even if on average there is
the load factor to be 32. Adding in the operating system enough bandwidth to show linear speedup, in practice the
overhead, one will generally see a load factor of roughly high bandwidth subroutines are likely to be bandwidth
32.5. When dealing with a single 32 processor coarse starved when all/most of the processors are being used by
grained application, the additional .5 units of work is a single job. This appears to be the best explanation as to
easily spread across the 32 processors, resulting in a why some of the subroutines showed nearly linear
predicted parallel speedup of 31.5. However, NMS_6b is speedup, while others showed at best factors of 20-25
parallelized using loop level parallelism, which is an speedups.
example of fine grained parallelism. Due to the increased
frequency of synchronization events, even if the operating 4. The Way in Which the Code Interacted
system overhead is spread across all 32 processors, it with the Memory System, in Particular with
behaves as though it is running on a single processor.
Therefore, the predicted speedup when using 32 the Stream Buffers
processors would only be 16, while the predicted speedup
when using 31 processors would be 3 1! Based on this One key aspect of the IBM SP with Power 4
analysis, measurements were made and it was found that processors is the ability of the processor to stream data
for the test case there was little difference in performance into the caches from main memory and on up to the
between 30 and 31 processors (due to the stair step processor. If each L3 cache miss was handled
effect), but that 32 processor runs were noticeably slower, individually as it happened, most of the memory
From that point on, all runs were made using 30 bandwidth would be unusable. Instead, the processor
processors on a dedicated 32 processor node. attempts to stream the data into the L3 processor

Another impediment to achieving parallel speedup on whenever possible. While prefetch instructions can help
an SMP node is the available memory bandwidth on a per to improve the efficiency of this process, the key
processor basis. On paper, the IBM SP with Power 4 component is the group of 8 stream buffers. This means
processors has a very impressive memory bandwidth. that up to 8 separate data streams can be efficiently
However, we were not seeing anything close to the peak moved from main memory at one time. This raises the
bandwidth. After checking with IBM, it was determined question, what happens if there are more than 8 data
that the peak bandwidth for a node equipped with less streams? The answer is not pretty. The performance of
than 128 GB of main memory is significantly less than the section of code in question can drop off rapidly. The
the published value. The system that we were using was extent to which this drop off is seen will in part depend
equipped with 32 GB of main memory per node. In and on what the overall cache miss rate is. The lower the
of itself, this would not appear to be an impediment to miss rate, the less of a problem one is likely to see.
achieving linear speedup, however with prefetching a In the case of NMS_6b, one of the second most
single processor should be able to take advantage of at expensive subroutine had 20 arrays that it was accessing.
least M/N MB/sec of memory bandwidth, where M is the Given the structure of this subroutine, this translated into
peak memory bandwidth and N is the maximum number at least 20 data streams. By carefully breaking the middle
of processors in a node. Since the system being used only loop into multiple loops and reordering some of the inner
had a peak memory bandwidth of m < M, it is not loops, it was possible to reduce the maximum number of
surprising that one would run out of memory bandwidth data streams in a middle loop to 8. The outer loop still
before running out of processors. When dealing with a had 20 data streams, but the stream buffers were primarily
collection of serial jobs, this is not likely to be a serious concerned with the inner and middle loops. As a result of

326



this and other optimizations, the speed of this routine was pages in main memory. To improve the, performance of
doubled. this process, a Translation Lookaside Buffer (TLB) is

used to cache recently used PTEs either inside of, or at

5. Cache Effects least close to the CPU. This puts an upper bound on the
size of a TLB. Most systems use TLBs with 64-256
entries. The Power 4 processor is equipped with a 1024An important aspect of the Power 4 processor is the entry TLB. Even so, when accessing multiple arrays in a

L3 cache. Its latency is 90 NS. The system that was used STRIDE-N access pattern, one would not be surprised to

in this exercise had a 1.3 GHz clock rate (.77 NS cycle find a large number of TLB misses. Using Perfex on an

time). This means that if an L3 cache hit stalls the SGI Origin 3000 and HPMcount on an IBM SP with

processor without being overlapped with other useful Poe 4roesr it a s fount on bt Syste
work th prcesor illlos th ablit'toexeute467 Power 4 processors, it was found that on both systems

work, the processor will lose the ability to execute 467 there were an extraordinarily large number of TLB
floating point operations. This is significantly more than misses. Several of the more expensive subroutines were
the amount of lost work associated with L2 cache hits on spending 50-90% of their time on TLB misses on the
many competing products. One might object to IBM system.
comparing an L3 cache to an L2 cache, however based on The most desirable solution to this problem is to
the size of the caches (16 MB for the L3 cache and 4-8 either reorder the indices of the arrays; or reorder the
MB for many L2 caches), this seems to be the most loops in a loop nest so that there is a STRIDE- 1 access
appropriate comparison. This means that with the Power pattern. Many codes perform sweeps through the data
4 processor, it is important to tune for both the L2 and L3 first in one direction, and then in another direction. This
caches. Unfortunately, on a per processor basis, the L2 is a critical part of the algorithm. In such 'a case, it will be
cache is less than 1MB in size. ipsil oeiiaealo h TIENacs

As was previously mentioned, many of the scratch impossible to eliminate all of the STRIDE-N access

arrays are 84 elements in size. What was not- mentioned patterns. The best that can be done in such a situation is
arrs arn e f elements of tehee ways e enind to block the code. This approach was used with many of
is that only the first 35 elements of these arrays are being the more expensive loops in NMS_6b. However, in a few
used. Attempts were made to decrease the size of these cases, the use of GOTOs and the hard to follow logic

arrays, however for reasons that were not immediately made it difficult to apply this technique. In one such

clear, they broke the program. As a general rule, this cae it riredcultipl tms bethe.routine s
woul hae ben lttl moe thn aminr anoyace. case, it required multiple attempts before' the routine was

would have been little more than a minor annoyance. successfully tuned without damaging the logic. Given the
However, when tuning loops with a STRIDE-N access complexity of this effort several related rdutines that were

pattern, one frequently uses blocking. A side effect is to calle les s een t w erel t e. Upon conclusio
chane oe dmeniona araysint twodimnsinal called less frequently were left alone. Upon conclusion

change one dimensional arrays into two dimensional of this project, over 90% of all TLB misses were

arrays. Given a 4 byte data size and a 128 byte cache line eliminated. This resulted in an overall saings of at least

size for the LI and L2 caches, on average one would 20% of the run time.

expect 76 percent of the 2-D array to be brought into the An interesting side note is that one expensive loop

L 1 cache, even though only 42 percent of the elements had to be left alone. Attempts to apply blocking to this

were being used. A more serious problem was that in loop required converting 1 -D scratch arrays into 2-D

many cases the scratch array was no longer fitting in the scratch arrays. The 1-D arrays had a high L 1 cache hit

L2 cache, or at best had a low hit rate due to a high rate of rate, and a nearly 0% L2 cache miss rate. The 2-D
eviction. By moving the declaration of the scratch array scratch array had a poor L I cache hit rate and a good, but
to the parent subroutine, we were able to leave the not great, L2 cache hit rate. As a result: of the increase
amount of allocated space unchanged. However, inside number of L1 and L2 cache misses, tIhe cost of the
of the routine where the array was actually being used, we additional cache misses significantly exceeded the
declared the scratch array with the smaller dimensions, savings from the reduction in TLB misses on the IBM SP

This approach was applied to many of the more expensive with Power 4 processors.

subroutines and resulted in an overall savings of
approximately 10% of the run time.

7. Methods Used to Reduce the Time Spent

6. Translation Lookaside Buffers (TLBs) on Integer Arithmetic

All RISC and CISC based systems divide main A surprising finding when running HPMcount was

memory into pages. Similarly, the logical address space that NMS_6b was spending a significant percentage of its

of a program is divided into pages. Page Table Entries time (probably in excess of 50% of the time, and more

(PTEs) are used to map the logical pages to the physical like 90% of the instructions) executing integer

327



instructions. It was found that several of the most productive. For reasons that are not clear, turning on that
expensive loops in the most expensive subroutine were feature actually slowed the program down by a few
constantly testing in inner loops to see if the current percent.
location was above or below ground. This information
was stored in a two dimensional integer array. In some 9. Conclusions
but not all cases, it was possible to move this test either to
an outer loop, or to move the test out of the body of theloop and into the DO statement itself. In the remaining The final result of this tuning effort was to reduce the

loopandint theDO tatmentitslf.In te rmaiing run time to 4 hours. Ideally, further reductions in run
cases, it was determined that no matter how mountainous time o4 hous e aly frther rductions innrun
the terrain is, the top of the atmosphere is significantly tim e o have beeg desirabledition tun
above ground level. Therefore, if one checks ahead of might be of some value (e.g., 20-50 % reduction in run
time for what the highest elevation for land (a 2-D time). The new IBM SP Power 4+ with a 25% faster
calculation), one can then use that value to move most of memory system and a 30 % faster processor might also
the tests outside of the inner most loop. The resulting help. However, it would appear as though the best
savings for the 3-D calculation more than offset the 2-D approach would be to consider other shared memory
calculation. systems. Some examples of these are:

A careful analysis of usage patterns allowed us to * SGI Altix with up to 256 6 GFLOP processors.

avoid creating arrays that were never being used for the * Fujitsu makes a SPARC based with up to 128 6
specified input data (for other input data it may still be GFLOP processors
necessary to create the arrays). A selective application of * HP makes the Super Dome and GS product
techniques for software pipelining allowed the lines.
elimination of many scratch variables and redundant Possibly one of these would allow us to reach the
calculations. Overall, the cost of the most expensive original goal of a 1 hour run with the least amount of
subroutine was reduced by more than a factor of 2. additional effort.

8. Large Page Sizes References

Documentation from IBM recommends using large 1. Tripoli, G.J., "A Nonhydrostatic Mesoscale Model Designed
memory pages as a way of improving performance. In to Simulated Scale Interaction." Monthly Weather Review, vol.
theory they should reduce the number of TLB misses. 120, no. 7, 1992, pp. 1342-359.
Furthermore, in the case of the Power 4 processor, they 2. Thompson, Steven R., et al., "Optimization of the NMS6b
should improve the efficiency of the stream buffers. Weather Model Code." Proceedings of the DoD HPCMP 2003
Early efforts to use large memory pages demonstrated Users Group Conference, June 2003.
their value. However, we were surprised to find that once 3. Pressel, Daniel M. "The Scalability of Loop-Level
the program had been tuned along the lines discussed in Parallelism." ARL-TR-2557, published by the US Army
this paper, the use of large pages actually was counter Research Laboratory, August 2001.

328


